

Nachhaltigkeit im Transport – wie können Güter wettbewerbsfähig auf die Schiene verlagert werden?

Dr. Thorsten Bieker

We create chemistry Veral

Veranstaltung im Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit am 08.07.2016

D • BASF We create chemistry

Chemicals remains a growth industry

Agriculture

Energy & Resources

- Construction & Consumer Housing
- products
- Automotive & Transport
- Electric & Electronics

Chemistry as enabler for current and future needs .

...people by 2050

... of the world population will live in cities by 2050

...more primary energy consumption by 2050

...more food needed by 2050

Climate protection at BASF

- With our climate protection products, we make an important contribution to climate protection and energy efficiency.
- We invest around one third of research expenditures in the development of products and processes for climate protection and energy efficiency.
- We reduce emissions along the entire value chain.
- We have set ourselves ambitious goals to reduce greenhouse gas emissions in our production by 2020 and want to reduce emissions per ton of sales product by 40% compared with 2002.

We help our customers to reduce their CO₂ emissions

Prevention of greenhouse gas emissions through the use of BASF products 2015 (in million metric tons of CO₂ equivalents*)

Without 1,210 **Emissions avoided:** using **BASF's** 530 (Attributable to BASF: 11%) products 680 Using **BASF's products**

* CO_2 equivalents = units for measuring the impact of greenhouse gas emissions on the greenhouse effect

Climate protection at BASF

Products for

- avoiding greenhouse gas emissions
- adapting to climate change

Reduction of greenhouse gas emissions in

- production
- value chains

We assume responsibility along the entire value chain

Greenhouse gas emissions along the BASF value chain in 2015

(in million metric tons of CO₂ equivalents)

BASF Supply Chain fosters sustainability at competitive cost by a proper modal split

Source: VCI-Leitfaden zur Ermittlung der CO $_2^{-\rm Emissionen}$ in der Logistik der chemischen Industrie, 06.07.2010

D • BASF

We create chemistry

Transportation Volume BASF Ludwigshafen 2015

We create chemistry

Volume inbound + outbound: 14.3 mio t

42 % Barge = 22 ships / day

32% Road = 1,966 trucks / day

26% Rail = 363 rail cars / day

Rail Transport

- 230 km Tracks
- 780 Switches
- Hump
- 161 Loading stations
- Railway undertaking

Competitive Advantage

classic rail tank car Intermodal (TC) tank lorry Labor cost per t Public acceptance (CO_2) Public acceptance (Noise) +/-Flexibility ÷ ÷ Transportation time ÷ ÷ Costs first & last mile ┿ ┿ Cost mobile equipment per t + ┿ Filling costs [Axle load] ÷

BASE

We create chemistry

Rail must shorten innovation cycle times to survive

Lightweight composites help to reduce weight in automobiles

In rail there are (almost) no activities to reduce weight

- Disadvantage in competition
- > Disadvantage to achieve further CO_2 reduction
- → Minimum weight restrictions / guidelines / regulations
 - 1 t minimum weight per meter
 - 4 t minimum axel load (5 t disk brake)

New rail optimized 45' tank container

We create chemistry

Existing 4 axle rail tank cars

	SE SE
BASF Innovation	

New 45' TC

Existing 20' to 26' TC

Volume:70,000 liter63,000 literPayload:64 tons66 tonsGross weight:90 tons75 tons (90 tons incl. wagon)

25,000 to 36,000 liter 32 tons 36 tons

Innovation: storage rail & barge optimized 45' tank container

- Costs advantage thru separate optimization of tank and wagon
- Less handlings & lower filling costs compared to existing 20' TC
- Shunting via cranes possible
- > Further automation of last and first mile process possible

BASF 45' tank container

BASF 45' tank container

Further Innovation first mile process possible

BASF We create chemistry

Google Car: prototype 2014

Mercedes truck: prototype 2014

Rolls Royce Ship: study 2014

Automation of first & last mile process is opportunity for conventional rail to keep competitive advantages and to shift more volume to rail

Summary Competitive Advantage

Labor cost per t Public acceptance (CO_2) Public acceptance (Noise)

Flexibility Transportation time Costs first & last mile Cost mobile equipment per t

Filling costs [Axle load]

We create chemistry